Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex.
نویسندگان
چکیده
To investigate potential physiological interactions between the transcellular and paracellular pathways of water transport, we asked whether targeted deletion of Aquaporin 5 (AQP5), the major transcellular water transporter in salivary acinar cells, affected paracellular transport of 4-kDa FITC-labeled dextran (FITC-D), which is transported through the paracellular but not the transcellular route. After i.v. injection of FITC-D into either AQP5 wild-type or AQP5-/- mice and saliva collection for fixed time intervals, we show that the relative amount of FITC-D transported in the saliva of AQP5-/- mice is half that in matched AQP5+/+ mice, indicating a 2-fold decrease in permeability of the paracellular barrier in mice lacking AQP5. We also found a significant difference in the proportion of transcellular vs. paracellular transport between male and female mice. Freeze-fracture electron microscopy revealed an increase in the number of tight junction strands of both AQP5+/+ and AQP5-/- male mice after pilocarpine stimulation but no change in strand number in female mice. Average acinar cell volume was increased by approximately 1.4-fold in glands from AQP5-/- mice, suggesting an alteration in the volume-sensing machinery of the cell. Western blots revealed that expression of Claudin-7, Claudin-3, and Occludin, critical proteins that regulate the permeability of the tight junction barrier, were significantly decreased in AQP5-/- compared with AQP5+/+ salivary glands. These findings reveal the existence of a gender-influenced molecular mechanism involving AQP5 that allows transcellular and paracellular routes of water transport to act in conjunction.
منابع مشابه
Significant water absorption goes paracellular in kidney proximal tubules.
IT HAD BEEN A FUNDAMENTAL dispute for several decades, whether water passes epithelia such as kidney proximal tubule or small intestine along the transcellular, paracellular, or both pathways. By discovery of the transmembranal aquaporin water channels (AQP), the molecular basis of the transcellular pathway was uncovered (1), but the molecular basis of the tight junctional pathway was not resol...
متن کاملAlteration of Tight Junction Gene Expression by Calciumand Vitamin D-Deficient Diet in the Duodenum of Calbindin-Null Mice
Calcium absorption is regulated by both active (transcellular) and passive (paracellular) pathways. Although each pathway has been studied, correlations between the two pathways have not been well elucidated. In previous investigations, the critical transcellular proteins, calbindin-D9k (CaBP-9k) and -D28k (CaBP-28k), were shown to affect other transcellular pathways by buffering intracellular ...
متن کاملILDR1 is important for paracellular water transport and urine concentration mechanism.
Whether the tight junction is permeable to water remains highly controversial. Here, we provide evidence that the tricellular tight junction is important for paracellular water permeation and that Ig-like domain containing receptor 1 (ILDR1) regulates its permeability. In the mouse kidney, ILDR1 is localized to tricellular tight junctions of the distal tubules. Genetic knockout of Ildr1 in the ...
متن کاملEnterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کاملTight junctions and paracellular fluid and ion transport in salivary glands.
Primary saliva is formed by salivary epithelial endpieces through two pathways, the transcellular and the paracellular pathways. While the mechanisms of ion transport through the transcellular pathway have been well studied, our understanding of fluid and electrolyte transport through the paracellular pathway remains rudimentary. Increasing evidence indicates that the tight junction (TJ) protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 9 شماره
صفحات -
تاریخ انتشار 2007